Buoyancy statistics in moist turbulent Rayleigh–Bénard convection
نویسندگان
چکیده
We study shallow moist Rayleigh–Bénard convection in the Boussinesq approximation in three-dimensional direct numerical simulations. The thermodynamics of phase changes is approximated by a piecewise linear equation of state close to the phase boundary. The impact of phase changes on the turbulent fluctuations and the transfer of buoyancy through the layer is discussed as a function of the Rayleigh number and the ability to form liquid water. The enhanced buoyancy flux due to phase changes is compared with dry convection reference cases and related to the cloud cover in the convection layer. This study indicates that the moist Rayleigh–Bénard problem offers a practical framework for the development and evaluation of parameterizations for atmospheric convection.
منابع مشابه
The mixing evolution and geometric properties of a passive scalar field in turbulent Rayleigh–Bénard convection
We report on measurements of a two-dimensional (2D) dye concentration field in turbulent Rayleigh–Bénard (RB) convection using the planar laser-induced fluorescence technique. The measurements were made in a vertical plane near the sidewall of a rectangular convection cell filled with water and with the Rayleigh number Ra varying from 109 to 1010, all at a fixed Prandtl number Pr = 5.3 and Schm...
متن کاملTemperature statistics in turbulent Rayleigh–Bénard convection
Rayleigh–Bénard (RB) convection in the turbulent regime is studied using statistical methods. Exact evolution equations for the probability density function of temperature and velocity are derived from first principles within the framework of the Lundgren–Monin–Novikov hierarchy known from homogeneous isotropic turbulence. The unclosed terms arising in the form of conditional averages are estim...
متن کاملRayleigh Bénard convection: bounds on the Nusselt number
Rayleigh-Bénard convection is the buoyancy-driven flow of a fluid heated from below and cooled from above. This model of thermal convection is a paradigm for pattern formation and turbulence [1] and it plays an important role in a large range of phenomena in geophysics, astrophysics, meteorology, oceanography and engineering. The problem under investigation is: given an incompressible fluid enc...
متن کاملHeat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection
The progress in our understanding of several aspects of turbulent Rayleigh-Bénard convection is reviewed. The focus is on the question of how the Nusselt number and the Reynolds number depend on the Rayleigh number Ra and the Prandtl number Pr, and on how the thicknesses of the thermal and the kinetic boundary layers scale with Ra and Pr. Non-Oberbeck-Boussinesq effects and the dynamics of the ...
متن کاملHeat transfer & large-scale dynamics in turbulent Rayleigh-Bénard convection
The progress in our understanding of several aspects of turbulent Rayleigh-Bénard convection is reviewed. The focus is on the question of how the Nusselt number and the Reynolds number depend on the Rayleigh number Ra and the Prandtl number Pr, and on how the thicknesses of the thermal and the kinetic boundary layers scale with Ra and Pr. Non-Oberbeck-Boussinesq effects and the dynamics of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010